Monday, 28 February 2022

Rankine Cycle with Reheat Steam Power Plant _Turbine Work output, Thermal Efficiency & T- S Diagram



Rankine Cycle with Reheat Steam Power Plant _Turbine Work output, Thermal Efficiency & T- S Diagram


This video will demonstrates a steam power plant operates on the ideal reheat Rankine cycle. Steam enters the high pressure turbine at 8 MPa and 500 C and leaves at 3 MPa. Steam is then reheated at constant pressure to 500 C before it expands to 20 kPa in the low pressure turbine. Determine the turbine work output, in kJ/kg, and the thermal efficiency of the cycle. Also show the cycle on a T-s diagram with respect to the saturation lines.

"!Pump analysis" P[1] = P[6] P[2]=P[3] x[1]=0 "Sat'd liquid" h[1]=enthalpy(Steam,P=P[1],x=x[1]) v[1]=volume(Steam,P=P[1],x=x[1]) s[1]=entropy(Steam,P=P[1],x=x[1]) T[1]=temperature(Steam,P=P[1],x=x[1]) W_p_s=v[1]*(P[2]-P[1]) "SSSF isentropic pump work assuming constant specific volume" W_p=W_p_s/Eta_p h[2]=h[1]+W_p "SSSF First Law for the pump" v[2]=volume(Steam,P=P[2],h=h[2]) s[2]=entropy(Steam,P=P[2],h=h[2]) T[2]=temperature(Steam,P=P[2],h=h[2]) "!High Pressure Turbine analysis" h[3]=enthalpy(Steam,T=T[3],P=P[3]) s[3]=entropy(Steam,T=T[3],P=P[3]) v[3]=volume(Steam,T=T[3],P=P[3]) s_s[4]=s[3] hs[4]=enthalpy(Steam,s=s_s[4],P=P[4]) Ts[4]=temperature(Steam,s=s_s[4],P=P[4]) Eta_t=(h[3]-h[4])/(h[3]-hs[4]) "Definition of turbine efficiency" T[4]=temperature(Steam,P=P[4],h=h[4]) s[4]=entropy(Steam,T=T[4],P=P[4]) v[4]=volume(Steam,s=s[4],P=P[4]) h[3] =W_t_hp+h[4] "SSSF First Law for the high pressure turbine" "!Low Pressure Turbine analysis" P[5]=P[4] s[5]=entropy(Steam,T=T[5],P=P[5]) h[5]=enthalpy(Steam,T=T[5],P=P[5]) s_s[6]=s[5] hs[6]=enthalpy(Steam,s=s_s[6],P=P[6]) Ts[6]=temperature(Steam,s=s_s[6],P=P[6]) vs[6]=volume(Steam,s=s_s[6],P=P[6]) Eta_t=(h[5]-h[6])/(h[5]-hs[6]) "Definition of turbine efficiency" h[5]=W_t_lp+h[6] "SSSF First Law for the low pressure turbine" x[6]=quality(Steam,h=h[6],P=P[6]) "!Boiler analysis" Q_in + h[2]+h[4]=h[3]+h[5] "SSSF First Law for the Boiler" "!Condenser analysis" h[6]=Q_out+h[1] "SSSF First Law for the Condenser" T[6]=temperature(Steam,h=h[6],P=P[6]) s[6]=entropy(Steam,h=h[6],P=P[6]) x6s$=' ('||Phase$(steam,h=h[6],P=P[6])||')' "!Cycle Statistics" W_net=W_t_hp+W_t_lp-W_p "net work" Eff=W_net/Q_in "cycle eficiency" Kindly Subscribe My YouTube Channel... Please like, share and comments on My Videos 🙏 Please click the below links to Subscribe/Join & View my Videos https: //www.youtube.com/c/DrMSivakumar For More Details about this Video Join/ View the following Telegram : t.me/Dr_MSivakumar website : drmsivakumar78.blogspot.com


No comments:

Post a Comment

Uploaded Matlab Videos