Saturday 5 February 2022

Modeling & Analysis of Residential Air Conditioning & Refrigeration System



Modeling & Analysis of   Residential Air Conditioning &  Refrigeration System

This example models a basic refrigeration system that transfers heat between the refrigerant two-phase fluid and the environment moist air mixture. The compressor drives the R134a refrigerant through a condenser, a capillary tube, and an evaporator. An accumulator ensures that only vapor returns to the compressor. This plot shows the rate of heat transfer between refrigerant and moist air in the condenser and evaporator as well as the rate of heat loss through the insulation of the compartment and freezer. It also shows the temperature of cold air and food in the compartment and freezer. At 11000 s, the compartment door is opened for 60s, resulting in a spike in compartment temperature. This plot shows the power consumed by the compressor and the cooling load of the refrigeration system, which is the rate of heat transfer in the evaporator. The coefficient of performance is the ratio of the cooling load and the power consumed. This plot shows refrigerant pressure and mass flow rate. The high pressure line is at around 1 MPa and the lower pressure line is at around 0.1 MPa. The nominal refrigerant flow rate is 1 g/s. The plot also shows the liquid volume fraction in the accumulator. This plot shows Fluid Properties with Temperature Vs Pressure Vs Normalized Internal Energy

  Click here to download the file:

https://drive.google.com/file/d/1tvoQOwCRL1QwPfJtCwjUiSTKGCBdE6pR/view?usp=sharing






Uploaded Matlab Videos