Rankine Cycle with Reheat Steam Power Plant _Turbine Work output, Thermal Efficiency & T- S Diagram
This video will demonstrates a steam power plant operates on the ideal reheat Rankine cycle.
Steam enters the high pressure turbine at 8 MPa and 500 C and leaves at 3 MPa.
Steam is then reheated at constant pressure to 500 C before it expands to 20 kPa in the low pressure turbine.
Determine the turbine work output, in kJ/kg, and the thermal efficiency of the cycle.
Also show the cycle on a T-s diagram with respect to the saturation lines.
"!Pump analysis"
P[1] = P[6]
P[2]=P[3]
x[1]=0 "Sat'd liquid"
h[1]=enthalpy(Steam,P=P[1],x=x[1])
v[1]=volume(Steam,P=P[1],x=x[1])
s[1]=entropy(Steam,P=P[1],x=x[1])
T[1]=temperature(Steam,P=P[1],x=x[1])
W_p_s=v[1]*(P[2]-P[1]) "SSSF isentropic pump work assuming constant specific volume"
W_p=W_p_s/Eta_p
h[2]=h[1]+W_p "SSSF First Law for the pump"
v[2]=volume(Steam,P=P[2],h=h[2])
s[2]=entropy(Steam,P=P[2],h=h[2])
T[2]=temperature(Steam,P=P[2],h=h[2])
"!High Pressure Turbine analysis"
h[3]=enthalpy(Steam,T=T[3],P=P[3])
s[3]=entropy(Steam,T=T[3],P=P[3])
v[3]=volume(Steam,T=T[3],P=P[3])
s_s[4]=s[3]
hs[4]=enthalpy(Steam,s=s_s[4],P=P[4])
Ts[4]=temperature(Steam,s=s_s[4],P=P[4])
Eta_t=(h[3]-h[4])/(h[3]-hs[4]) "Definition of turbine efficiency"
T[4]=temperature(Steam,P=P[4],h=h[4])
s[4]=entropy(Steam,T=T[4],P=P[4])
v[4]=volume(Steam,s=s[4],P=P[4])
h[3] =W_t_hp+h[4] "SSSF First Law for the high pressure turbine"
"!Low Pressure Turbine analysis"
P[5]=P[4]
s[5]=entropy(Steam,T=T[5],P=P[5])
h[5]=enthalpy(Steam,T=T[5],P=P[5])
s_s[6]=s[5]
hs[6]=enthalpy(Steam,s=s_s[6],P=P[6])
Ts[6]=temperature(Steam,s=s_s[6],P=P[6])
vs[6]=volume(Steam,s=s_s[6],P=P[6])
Eta_t=(h[5]-h[6])/(h[5]-hs[6]) "Definition of turbine efficiency"
h[5]=W_t_lp+h[6] "SSSF First Law for the low pressure turbine"
x[6]=quality(Steam,h=h[6],P=P[6])
"!Boiler analysis"
Q_in + h[2]+h[4]=h[3]+h[5] "SSSF First Law for the Boiler"
"!Condenser analysis"
h[6]=Q_out+h[1] "SSSF First Law for the Condenser"
T[6]=temperature(Steam,h=h[6],P=P[6])
s[6]=entropy(Steam,h=h[6],P=P[6])
x6s$=' ('||Phase$(steam,h=h[6],P=P[6])||')'
"!Cycle Statistics"
W_net=W_t_hp+W_t_lp-W_p "net work"
Eff=W_net/Q_in "cycle eficiency"
Kindly Subscribe My YouTube Channel...
Please like, share and comments on My Videos đ
Please click the below links to Subscribe/Join & View my Videos
https: //www.youtube.com/c/DrMSivakumar
For More Details about this Video Join/ View the following
Telegram : t.me/Dr_MSivakumar
website : drmsivakumar78.blogspot.com